lunes, 29 de octubre de 2012

Que son los conectores

Que son los conectores
Conectores
En informática, los conectores, normalmente denominados "conectores de entrada/salida" (o abreviado conectores E/S) son interfaces para conectar dispositivos mediante cables. Generalmente tienen un extremo macho con clavijas que sobresalen. Este enchufe debe insertarse en una parte hembra (también denominada socket), que incluye agujeros para acomodar las clavijas. Sin embargo, existen enchufes "hermafroditas" que pueden actuar como enchufes macho o hembra y se pueden insertar en cualquiera de los dos.
Disposición de las clavijas
Las clavijas y los orificios de los conectores están generalmente conectados a los hilos que forman el cable. La disposición de las clavijas describe cuáles son las clavijas que se emparejan con los hilos.
Cada clavija numerada generalmente se corresponde con un hilo dentro del cable, pero a veces una de las clavijas no se utiliza. Además, en algunos casos, dos clavijas se pueden conectar entre sí. Esto se denomina "puente".
Conectores de entrada/salida
La placa madre de un equipo tiene un cierto número de conectores de entrada/salida ubicados en el "panel trasero".

Conectores en el panel trasero
La mayoría de las placas madre tienen los siguientes conectores:
  • Puerto de serie: que utiliza un conector DB9 para conectar dispositivos más antiguos,
  • Puerto paralelo: que utiliza un conector DB25 para conectar principalmente impresoras antiguas,
  • Puertos USB (1.1, baja velocidad, o 2.0, alta velocidad) para conectar periféricos más recientes,
  • Conector RJ45: (denominado Puerto LAN o Puerto Ethernet) para conectar el equipo a una red. Interactúa con una tarjeta de red que se encuentra en la placa madre,
  • Conector VGA: (denominado SUB-D15), utilizado para conectar el monitor. Este conector interactúa con la tarjeta gráfica integrada,
  • Enchufes hembra: (Entrada de línea, Salida de línea y micrófono) para conectar altavoces, un sistema de sonido de alta fidelidad o un micrófono. Este conector interactúa con la tarjeta de sonido integrada

Ranuras de expansión
es un elemento de la placa base de un ordenador que permite conectar a esta una tarjeta adicional o de expansión, la cual suele realizar funciones de control de dispositivos periféricos adicionales, tales como monitores, impresoras o unidades de disco. En las tarjetas madre del tipo LPX las ranuras de expansión no se encuentran sobre la placa sino en un conector especial denominado riser card.

Las ranuras están conectadas entre sí con la hermana de Martín. Una computadora personal dispone generalmente de ocho unidades, aunque puede llegar hasta doce.

Tipos de ranuras

XT

Es una de las ranuras más antiguas y trabaja con una velocidad muy inferior a las ranuras modernas (8 bits) y a una frecuencia de 4,77 megahercios, ya que garantiza que los PC estén bien ubicados para su mejor funcionamiento; necesita ser revisados antes.

ISA

Tres ranuras ISA.

La ranura ISA es una ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 megahercios. Los componentes diseñados para la ranura ISA eran muy grandes y fueron de las primeras ranuras en usarse en las computadoras personales. Hoy en día es una tecnología en desuso y ya no se fabrican placas madre con ranuras ISA. Estas ranuras se incluyeron hasta los primeros modelos del microprocesador Pentium III. Fue reemplazada en el año 2000 por la ranura PCI.

VESA

En 1992 el comité VESA de la empresa NEC crea esta ranura para dar soporte a las nuevas placas de video. Es fácilmente identificable en la placa base debido a que consiste de un ISA con una extensión color marrón, trabaja a 4 bits y con una frecuencia que varia desde 33 a 40 megahercios. Tiene 22,3 centímetros de largo (ISA más la extensión) 1,4 de alto, 1,9 de ancho (ISA) y 0,8 de ancho (extensión).

PCI

Buses PCI de una placa base para Pentium I.

Peripheral Component Interconnect o PCI es un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en las computadoras personales, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite la configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpers externos. Las últimas revisiones de ISA y el bus MCA de IBM ya incorporaban tecnologías que automatizaban todo el proceso de configuración de las tarjetas, pero el bus PCI demostró una mayor eficacia en tecnología plug and play. Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.

Variantes convencionales de PCI

Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son:
- PCI 1.0: Primera versión del bus PCI. Se trata de un bus de 32bits a 16Mhz.
- PCI 2.0: Primera versión estandarizada y comercial. Bus de 32bits, a 33MHz
- PCI 2.1: Bus de 32bist, a 66Mhz y señal de 3.3 voltios
- PCI 2.2: Bus de 32bits, a 66Mhz, requiriendo 3.3 voltios. Transferencia de hasta 533MB/s
- PCI 2.3: Bus de 32bits, a 66Mhz. Permite el uso de 3.3 voltios y señalizador universal, pero no soporta señal de 5 voltios en las tarjetas.
- PCI 3.0: Es el estándar definitivo, ya sin soporte para 5 voltios.

Ranura audio/módem rise (izquierda) junto a una ranura PCI (derecha).
El audio/modem rise o AMR es una ranura de expansión en la placa madre para dispositivos de audio (como tarjetas de sonido) o módems lanzada en 1998 y presente en placas de Intel Pentium III, Intel Pentium IV y AMD Athlon. Fue diseñada por Intel como una interfaz con los diversos chipsets para proporcionar funcionalidad analógica de entrada/salida permitiendo que esos componentes fueran reutilizados en placas posteriores sin tener que pasar por un nuevo proceso de certificación de la Comisión Federal de Comunicaciones (con los costes en tiempo y económicos que conlleva).
Cuenta con 2x23 pines divididos en dos bloques, uno de 11 (el más cercano al borde de la placa madre) y otro de 12, con lo que es físicamente imposible una inserción errónea, y suele aparecer en lugar de una ranura PCI, aunque a diferencia de este no es plug and play y no admite tarjetas aceleradas por hardware (sólo por software).
En un principio se diseñó como ranura de expansión para dispositivos económicos de audio o comunicaciones ya que estos harían uso de los recursos de la máquina como el microprocesador y la memoria RAM. Esto tuvo poco éxito ya que fue lanzado en un momento en que la potencia de las máquinas no era la adecuada para soportar esta carga y el mal o escaso soporte de los drivers para estos dispositivos en sistemas operativos que no fuesen Windows.

PCI-Express

Ranura PCI-Express 1x.

PCI-Express, abreviado como PCI-E o PCIE, aunque erróneamente se le suele abreviar como PCIX o PCI-X. Sin embargo, PCI-Express no tiene nada que ver con PCI-X que es una evolución de PCI, en la que se consigue aumentar el ancho de banda mediante el incremento de la frecuencia, llegando a ser 32 veces más rápido que el PCI 2.1. Su velocidad es mayor que PCI-Express, pero presenta el inconveniente de que al instalar más de un dispositivo la frecuencia base se reduce y pierde velocidad de transmisión.
Este bus está estructurado como enlaces punto a punto,full-duplex, trabajando en serie. En PCIE 1.1 (el más común en 2007) cada enlace transporta 250 MB/s en cada dirección. PCIE 2.0 dobla esta tasa y PCIE 3.0 la dobla de nuevo.
Cada slot de expansión lleva uno, dos, cuatro, ocho, dieciséis o treinta y dos enlaces de datos entre la placa base y las tarjetas conectadas. El número de enlaces se escribe con una x de prefijo (x1 para un enlace simple y x16 para una tarjeta con dieciséis enlaces. Treinta y dos enlaces de 250MB/s dan el máximo ancho de banda, 8 GB/s (250 MB/s x 32) en cada dirección para PCIE 1.1. En el uso más común (x16) proporcionan un ancho de banda de 4 GB/s (250 MB/s x 16) en cada dirección. En comparación con otros buses, un enlace simple es aproximadamente el doble de rápido que el PCI normal; un slot de cuatro enlaces, tiene un ancho de banda comparable a la versión más rápida de PCI-X 1.0, y ocho enlaces tienen un ancho de banda comparable a la versión más
rápida de AGP.

Slots PCI Express (de arriba a abajo: x4, x16, x1 y x16), comparado con uno tradicional PCI de 32 bits, tal como se ven en la placa DFI LanParty nF4 Ultra-D.Está pensado para ser usado sólo como bus local, aunque existen extensores capaces de conectar múltiples placas base mediante cables de cobre o incluso fibra óptica. Debido a que se basa en el bus PCI, las tarjetas actuales pueden ser reconvertidas a PCI-Express cambiando solamente la capa física. La velocidad superior del PCI-Express permitirá reemplazar casi todos los demás buses, AGP y PCI incluidos. La idea de Intel es tener un solo controlador PCI-Express comunicándose con todos los dispositivos, en vez de con el actual sistema de puente norte y puente sur. Este conector es usado mayormente para conectar tarjetas gráficas.
No es todavía suficientemente rápido para ser usado como bus de memoria. Esto es una desventaja que no tiene el sistema similar HyperTransport, que también puede tener este uso. Además no ofrece la flexibilidad del sistema InfiniBand, que tiene rendimiento similar, y además puede ser usado como bus interno externo.
En 2006 es percibido como un estándar de las placas base para PC, especialmente en tarjetas gráficas. Marcas como ATI Technologies y nVIDIA entre otras tienen tarjetas gráficas en PCI-Express

Dimensiones de las tarjetas

Una tarjeta PCI de tamaño completo tiene un alto de 107 mm (4.2 pulgadas) y un largo de 312 mm (12.283 pulgadas). La altura incluye el conector de borde de tarjeta.
Además de estas dimensiones tan grandes y tan invisibles a su vez el tamaño del backplate está también estandarizado. El backplate es la pieza de metal situada en el borde que se utiliza para fijarla al chasis y contiene los conectores externos. La tarjeta puede ser de un tamaño menor, pero el backplate debe ser de tamaño completo y localizado propiamente. Respecto del anterior bus ISA, está situado en el lado opuesto de la placa para evitar errores.
Las tarjetas de media altura son hoy comunes en equipos compactos con chasis Small Form Factor, pero el fabricante suele proporcionar dos backplates, con el de altura completa fijado en la tarjeta y el de media altura disponible para una fácil sustitución.

Sockets
socket es también usado como el nombre de una interfaz de programación de aplicaciones (API) para la familia de protocolos de Internet TCP/IP, provista usualmente por el sistema operativo.
Los sockets de Internet constituyen el mecanismo para la entrega de paquetes de datos provenientes de la tarjeta de red a los procesos o hilos apropiados. Un socket queda definido por un par de direcciones IP local y remota, un protocolo de transporte y un par de números de puerto local y remoto.

Sockets
socket es también usado como el nombre de una interfaz de programación de aplicaciones (API) para la familia de protocolos de Internet TCP/IP, provista usualmente por el sistema operativo.
Los sockets de Internet constituyen el mecanismo para la entrega de paquetes de datos provenientes de la tarjeta de red a los procesos o hilos apropiados. Un socket queda definido por un par de direcciones IP local y remota, un protocolo de transporte y un par de números de puerto local y remoto.

 
 

lunes, 10 de septiembre de 2012

LAS 8 FALLAS DE LA BOARD

 LAS 8 FALLAS DE LA BORAD

 1. FALLA: EL EQUIPO NO DA VIDEO: Verifique el cable de alimentación de AC (Cable A) y que el monitor este encendido.
Trate de ubicar un cable para monitor que usted sepa que esta bueno (Cable B). Si con el cable A el monitor no enciende y con el cable B en monitor enciende, entonces el Cable A probablemente este abierto por dentro, en este caso asegúrese con un multímetro y reemplaza el cable. Chequee que el cable RGB este conectado al conector de la tarjeta de video. Algunos cables RGB cuando están dañados o unos de sus cables internos están abiertos (a excepción del negro o tierras), las imágenes se mostraran con otros colores. En este caso, se deberá reemplazar el cable RGB completo ó se deberá ubicar la parte que esta dañada y repararla. Por lo general se dañan al inicio de su conector DB15, por lo que resulta mas practico cambiar el conector. Cuando el cable de tierra o negro del cable RGB esta dañado, se interrumpe la trasmisión de video al monitor (CRT). Verifique la Pila del BIOS: Algunas tarjetas madre integradas o no integradas, no envían video cuando la pila del BIOS esta descargada, desinstale la pila, pruébela con un multímetro y si esta descargada, reemplácela por una nueva. OJO: Nunca intente adaptar pilas alcalinas al BIOS, porque no son a base de Litium, se explotan al cabo de cierto tiempo y sulfatan la tarjeta madre, causando daño irreversible. Destape la CPU, ubique el jumper del BIOS del equipo y resetéelo, luego encienda el equipo. Lo que sucede aquí es que muchos usuarios no saben configurar el BIOS de su equipo y ajustan mal la velocidad y los buses del procesador por lo que la BIOS muestra una información errónea o no envía video por medida de seguridad para no dañar el subsistema de video. Esto es una característica incorporada de algunas tarjetas madres como la M-766. Con la CPU abierta verifique las memorias, limpie los pines y el banco, y vuelva a conectarlas. Esto sucede cuando la CPU esta muy sucia por dentro y las tarjetas y memorias tienen tanto tiempo que se forma una capa de sulfato de hierro o cobre en los pines de cada dispositivo, cortando la comunicación de dicho dispositivo con la tarjeta madre. En este caso, retire las memorias de sus bancos con mucho cuidado, limpie el banco con SQ Antiestático y proceda a limpiar casa uno de los pines de las memorias. Luego instálelas y encienda la computadora. Pruebe su CPU con otras memorias que este usted sepa que funcionan bien. Instale unas memorias que estén bien y pruebe su CPU, si envía video, pruebe cada una de las memorias antiguas con otro equipo, si no envía video el otro equipo, reemplace la (s) memoria(s) antiguas por una(s) nueva(s). Verifique la tarjeta de video, limpie los pines y la ranura de expansión. Esto se hace con otra tarjeta madre, si la tarjeta madre piloto no envía video con la tarjeta de video sospechosa, reemplace la tarjeta de video. Si su tarjeta madre tiene tarjeta de video integrada como el caso de las M-748, M-755, M-766, etc., intente probar instalando otra tarjeta de video PCI. Si con otra tarjeta de video funciona, lo mas probable es que el chip de video de la tarjeta madre este dañado. Se deberá reemplazar la tarjeta madre completa o en su defecto instalar una tarjeta de video permanentemente en el equipo. Intente probar su procesador y memorias en otra tarjeta madre compatible. Instale su procesador y memorias en otra tarjeta madre compatible y pruébelos, si encienden, tenga seguro que la tarjeta madre antigua esta defectuosa o tiene problemas el BIOS.


 2. FALLA: LAS IMÁGENES DEL MONITOR NO TIENEN TODOS LOS COLORES.
Verifique que los controladores de video del adaptador de video estén bien instalados. Esto se hace viendo las propiedades del Sistema desde Windows en la opción Administrador de Dispositivos de la categoría Sistema del Panel de Control. Si tiene un signo de exclamación, significa que a) Los controladores del Dispositivo no están instalados correctamente, b) El dispositivo tiene un conflicto de recursos (IRQ) direcciones de memorias, c) la configuración del adaptador de video no esta bien y se corrige en las propiedades de la pantalla en la opción Configuración, asignando los colores a 16.000.000 o más colores. Si el equipo se inicia en Modo a Prueba de Fallos, nunca mostrara todos los colores. En este caso se deberá revisar el porqué esta iniciando en Modo A Prueba de Fallos. Esto esta casi siempre relacionado con errores lógicos o físicos del disco duro. Verifique el cable RGB del monitor, ya que algunos cables se abren por dentro, no se ven todos los colores porque faltara un color primario. Los cables RGB funcionan con tres colores primarios Rojo, amarillo y azul, si alguno de ellos fallara, las imágenes se verán amarillentas, azuladas o muy rojizas.

3. FALLA: INSERT DISK BOOT AND RESTART, NO SE ENCUENTRA EL SISTEMA OPERATIVO u OPERATING SYSTEM NOT FOUND. ROM HALTED, etc.
Verifique que el BIOS del equipo detecte el Disco Duro de su PC. Esto se hace viendo presionado la tecla DEL o SUPR del teclado al momento en que el equipo efectué la lectura de la RAM y muestre el mensaje "PRESS DEL TO ENTER SET UP". Luego entrar en la Primera opción "STÁNDAR CMOS SET UP", ubicarse en la opción "PRIMARY DISK" y presionar "ENTER" o "INTRO". Si aparece un mensaje indicando la característica del Disco Duros, entonces de deberá guardar los cambios efectuado en la CMOS, reiniciar el equipo y proceder a evaluar porque no ingresa al sistema. Verifique el Jumper del HDD: Asegúrese que el Jumper este seleccionado en MASTER para discos primarios o SLAVE para discos esclavos. Si el disco esta en MASTER y aun así no lo detecta, lo mas probable es que la tarjeta controladora del HDD y el controlados del HDD en la tarjeta madre este dañada o el BIOS de la tarjeta madre este dañado. En ese caso deberá ubicar un disco usado, cambiar la tarjeta controlado del HDD con otra de iguales características y reemplazarla, actualizar la BIOS del equipo, instalar una tarjeta controlador de HDD ISA ó Instalar u nuevo disco duro. Verifique los archivos de arranque del disco duro. Con un disco de Inicio de Windows 95 o 98 usted puede explorar el disco duros de su equipo, y asegúrese de que no existan errores lógicos o físicos en el mismo con un SCANDISK y de que los archivos del sistema se encuentre el sus directorios. Si faltase algún archivo del sistema como MSDOS.SYS; IOS.SYS, COMMAND: COM, WIN.COM, entre otros, deberá reinstalar de nuevo el sistema operativo para reponer los archivos faltantes Verifique las fajas del o los HDD´s y CD-ROM´s Drivers. En ocasiones, cuando los equipos se destapan mucho y se mueven constantemente las fajas de forma brusca, de abren por dentro alguno de sus hilos y no permite la comunicación de la tarjeta madre con el o los discos. En este caso, se deberá reemplazar las fajas por unas nuevas.

4. FALLA: EL PUNTERO DEL MOUSE NO SE MUEVE.
Verifique que el cable del Mouse este correctamente instalado en sus puerto. Revise los controladores del Mouse en el administrador de dispositivos. Asegúrese que el puerto COMM1 este habilitado en el BIOS del PC. Chequee que la faja de interfaz del puerto COMM1 este conectada correctamente en la tarjeta madre y que este funcionando. Destape el mouse y revise que los lectores ópticos este derechos y el cable no este abierto por dentro con un multímetro. Cerciórese que el Mouse no este utilizando los mismos recursos de otros dispositivos.

5. FALLA: TECLADO NO RESPONDE.
Reinicie el equipo. Posiblemente Windows que colgó y el teclado no respondían. Presione la tecla DEL para verificar si el teclado responde en modo MS-DOS. Debería entrar en la CMOS o BIOS del equipo. Verifique el no exista un administrador de políticas del sistema o Virus que deshabilite el teclado al cargar Windows. Muchos administradores de Sistemas deshabilitan el teclado en el archivo MS-DOS.SYS. Verifique el cable del teclado con un multímetro Si esta abierto uno de sus cable internos, debería reemplazar el cable completo por otro de igual modelo o reparar la parte dañada pero con estética. OJO. Nunca coloque otro cable diferente porque podría quemar el teclado y su puerto en la tarjeta madre cuando lo conecte. Pruebe su teclado con otro equipo. Si no responde, reemplácelo por otro nuevo.

6. FALLA: LA UNIDAD DE CD-ROM, CD-WRITER O DVD-ROM NO LEE LOS CD´S.
Revise que la unidad este funcionado y correctamente instalada en la computadora. Verifique el controlador de la Unidad de CD-ROM en la Opción Sistema de las Propiedades del Icono MI PC de Windows. Verifique que el CD que esta introduciendo no sea una copia de otro CD, este rayado o con manchas dactilares fuertes. Las unidades que leen a menos de 8X por lo general tienen problemas para leer copias de otros CD´s, especialmente si están rayados o muy deteriorados. Revise que el BIOS del PC reconozca la Unidad de CD-ROM. Para esto proceda como si se tratase de un Discos Duro. Destape la CPU y verifique que la Unidad de CD-ROM esta configurada como Máster o Slave según su posición en la faja de Discos. Pruebe su Unidad de CD-ROM con otra faja de Discos Duros y reemplace la dañada. Destape la Unidad de CD-ROM y verifique que todas las piezas mecánicas estén en su lugar especialmente el lector óptico. .Algunas unidades Híbridas producen muchas vibraciones cuando leen un CD y esto causa que el lector óptico se desajuste. En este caso de deberá ajusta el regulador del Lector óptico con un destornillador de precisión, hasta que ya no tenga problemas para leer los CD´s. Si se trata de una Quemadora SCSI, revise la integrada de la tarjeta controladora y proceda como si fuese una unidad de CD-ROM convencional.

 7. FALLA: LA UNIDAD DE FLOPPY NO LEE LOS DISQUETES.
 Revise la ranura de la Unidad y cerciórese que no exista ningún objeto incrustado en el cabezal. La mayoría de los
problemas de estas unidades están asociados al mal maltrato del usuario con el equipo. En algunos casos, los usuarios no sacan los disquetes de manera apropiada y se queda la compuerta del Disquete incrustado dentro de la Unidad. En este caso se deberá desarmar la unidad de Floppy y retirar el objeto incrustado, asegurándose de que el resto de los dispositivos mecánicos Estén en orden y que no hallan cables o fajas partidas. Chequee que la unidad de Floppy no esta sucia por dentro. Otro problema común, es que no se le hace mantenimiento a estas unidades y al cabo de cierto tiempo se forma una capa de polvo tan gruesa en los cabezales o el mecanismo de la unidad, que impide la buena lectura de los datos. Para este caso, se deberá destapar la unidad de Floppy y se limpiara con una Brocha pequeña o un soplador, pero con extremo cuidado. Asegúrese que la unidad este encendida y bien conectada a la tarjeta madre. Destape la CPU y revise que el cable de alimentación de la unidad este conectado y enviando la energía necesaria para el funcionamiento de la unidad (Esto se verifica con un Multímetro). Luego verifique que la faja de interfaz este conectada. Retire la faja de interfaz y pruebe la unidad con otra faja que usted separa que esta en buenas condiciones Si la unidad responde, entonces reemplace la faja antigua por la nueva faja. Ingrese al BIOS de la PC en la opción "STANDARD CMOS SETUP" y cerciórese que el controlador de la tarjeta madre para la Unidad de Floppy este habilitada en Disco de 3 ½.

 8. FALLA: LA COMPUTADORA NO ENCIENDE
Revise que el regulador de voltaje este encendido y enviando energía a la fuente de la CPU. Esto último se hace con la ayuda de un Multímetro. Chequee la fuente de poder de la CPU desconectada de la Tarjeta madre. Esto se hace con la ayuda de un Multímetro Pruebe su tarjeta madre con otra fuente de poder AT o ATX dependiendo del equipo. En la mayoría de los equipos ATX, lo que más se suele dañar es la fuente de poder. Este es el factor de multiplicación del Microprocesador

LA TARJETA MADRE

LA TARJETA MADRE.
La tarjeta madre es el componente más importante de un computador. Es el dispositivo que funciona como la plataforma o circuito principal de una computadora, integra y coordina todos los sus demás elementos. Tambien es conocida como placa base, placa central, placa madre, tarjeta madre o Board (en inglés motherboard, mainboard).
La tarjeta madre es un tablero que contiene todos los conectores que se necesitan para conectar las demás tarjetas del computador. Una tarjeta madre alberga los conectores del procesador, memoria RAM, Bios, puertas en serie, puertas en paralelo, expansión de la memoria, pantalla, teclado, disco duro, enchufes. Una vez que la tarjeta madre ha sido equipada con esta los elementos que se han mencionado, se le llama “Chipset” o conjunto de procesadores.
La tarjeta madre debe realizar básicamente las siguientes tareas:
. Conexión física.
. Administración, control y distribución de energía eléctrica
. Comunicación de datos
. Temporización
. Sincronismo
. Control y monitoreo
Para que la placa base cumpla con su cometido, lleva instalado un software muy básico denominado BIOS.
 Placa madre
 FUNCION DE LA TARJETA  MADRE
La motherboard o placa madre son, junto al microprocesador y la memoria, la parte esencial de la computadora. La placa madre se encarga de comunicar todos los componentes de la computadora entre sí.
 






CARATERISTICAS DE LA TARJETA MADRE
Hay 3 cosas básicas:
1. La velocidad soportada por el bus (esta determina su escalabilidad de procesador).
2. El hardware soportado, es decir, los slots de memoria, numero de puertos PCI, USB y firewire.
3. Si tiene integrados (de ser así, cuales) audio, video, red, modem.
 





PARTES DE LA TARJETA MADRE

lunes, 3 de septiembre de 2012

LA MEMORIA RAM


1.Dibujar una memoria RAM
   

   













2. Cual es la memoria RAM y cual es su función principal.
RAM son las siglas de random access memory o memoria de acceso aleatorio, es un tipo de memoria que permite almacenar y/o extraer información (Lectura/Escritura), accesando aleatoriamente; es decir, puede acceder a cualquier punto o dirección del mismo y en cualquier momento (no secuencial).
La memoria RAM, se compone de uno o más chips y se utiliza como memoria de trabajo para guardar o borrar nuestros programas y datos. Es un tipo de memoria temporal que pierde sus datos cuando el computador se queda sin energía. 
Hay dos tipos básicos de memoria RAM: 
1.       RAM dinámica (DRAM)
2.    RAM estática (SRAM)
Los dos tipos de memoria RAM se diferencian en la tecnología que utilizan para guardar los datos, la memoria RAM dinámica es la más común.
La memoria RAM dinámica necesita actualizarse miles de veces por segundo, mientras que la memoria RAM estática no necesita actualizarse, por lo que es más rápida, aunque también más cara. Ambos tipos de memoria RAM son volátiles, es decir, que pierden su contenido cuando se apaga el equipo.
                                          
3. Tipos de memoria RAM
Tipos de memoria RAM
VRAM
Siglas de Vídeo RAM, una memoria de propósito especial usada por los adaptadores de vídeo. A diferencia de la convencional memoria RAM, la VRAM puede ser accedida por dos diferentes dispositivos de forma simultánea. Esto permite que un monitor pueda acceder a la VRAM para las actualizaciones de la pantalla al mismo tiempo que un procesador gráfico suministra nuevos datos. VRAM permite mejores rendimientos gráficos aunque es más cara que la una RAM normal.
SIMM
Siglas de Single In line Memory Module, un tipo de encapsulado consistente en una pequeña placa de circuito impreso que almacena chips de memoria, y que se inserta en un zócalo SIMM en la placa madre o en la placa de memoria. Los SIMMs son más fáciles de instalar que los antiguos chips de memoria individuales, y a diferencia de ellos son medidos en bytes en lugar de bits.
Hay de dos tipos de 30 y de 72 pines. Los de 30 vienen en capacidades de 256K y 1Mb y ya casi no se usan. Los de 72 vienen en versiones de 4, 8, 16, 32 . Su principal desventaja: trabajan en pares.
DIMM
Siglas de Dual In line Memory Module, un tipo de encapsulado, consistente en una pequeña placa de circuito impreso que almacena chips de memoria, que se inserta en un zócalo DIMM en la placa madre y usa generalmente un conector de 168 contactos. No se pueden mesclar DIMM y SIMM.
DIP
Siglas de Dual In line Package, un tipo de encapsulado consistente en almacenar un chip de memoria en una caja rectangular con dos filas de pines de conexión en cada lado.
RAM Disk
Se refiere a la RAM que ha sido configurada para simular un disco duro. Se puede acceder a los ficheros de un RAM disk de la misma forma en la que se acceden a los de un disco duro. Sin embargo, los RAM disk son aproximadamente miles de veces más rápidos que los discos duros, y son particularmente útiles para aplicaciones que precisan de frecuentes accesos a disco.
Dado que están constituidos por RAM normal. los RAM disk pierden su contenido una vez que la computadora es apagada. Para usar los RAM Disk se precisa copiar los ficheros desde un disco duro real al inicio de la sesión y copiarlos de nuevo al disco duro antes de apagar la máquina. Observe que en el caso de fallo de alimentación eléctrica, se perderán los datos que huviera en el RAM disk. El sistema operativo DOS permite convertir la memoria extendida en un RAM Disk por medio del comando VDISK, siglas de Virtual DISK, otro nombre de los RAM Disks.
Memoria Caché ó RAM Caché
Un caché es un sistema especial de almacenamiento de alta velocidad. Puede ser tanto un área reservada de la memoria principal como un dispositivo de almacenamiento de alta velocidad independiente. Hay dos tipos de caché frecuentemente usados en las computadoras personales: memoria caché y caché de disco. Una memoria caché, llamada tambien a veces almacenamiento caché ó RAM caché, es una parte de memoria RAM estática de alta velocidad (SRAM) más que la lenta y barata RAM dinámica (DRAM) usada como memoria principal. La memoria caché es efectiva dado que los programas acceden una y otra vez a los mismos datos o instrucciones. Guardando esta información en SRAM, la computadora evita acceder a la lenta DRAM.
Cuando un dato es encontrado en el caché, se dice que se ha producido un impacto (hit), siendo un caché juzgado por su tasa de impactos (hit rate). Los sistemas de memoria caché usan una tecnología conocida por caché inteligente en el cual el sistema puede reconocer cierto tipo de datos usados frecuentemente. Las estrategias para determinar qué información debe de ser puesta en el caché constituyen uno de los problemas más interesantes en la ciencia de las computadoras. Algunas memorias caché están construidas en la arquitectura de los microprocesadores. Por ejemplo, el procesador Pentium II tiene una caché L2 de 512 Kbytes.
El caché de disco trabaja sobre los mismos principios que la memoria caché, pero en lugar de usar SRAM de alta velocidad, usa la convencional memoria principal. Los datos más recientes del disco duro a los que se ha accedido (así como los sectores adyacentes) se almacenan en un buffer de memoria. Cuando el programa necesita acceder a datos del disco, lo primero que comprueba es la caché del disco para ver si los datos ya estan ahí. La caché de disco puede mejorar drásticamente el rendimiento de las aplicaciones, dado que acceder a un byte de datos en RAM puede ser miles de veces más rápido que acceder a un byte del disco duro.
SRAM
Siglas de Static Random Access Memory, es un tipo de memoria que es más rápida y fiable que la más común DRAM (Dynamic RAM). El término estática viene derivado del hecho que necesita ser refrescada menos veces que la RAM dinámica.
Los chips de RAM estática tienen tiempos de acceso del orden de 10 a 30 nanosegundos, mientras que las RAM dinámicas están por encima de 30, y las memorias bipolares y ECL se encuentran por debajo de 10 nanosegundos.
Un bit de RAM estática se construye con un — como circuito flip-flop que permite que la corriente fluya de un lado a otro basándose en cual de los dos transistores es activado. Las RAM estáticas no precisan de circuiteria de refresco como sucede con las RAMs dinámicas, pero precisan más espacio y usan mas energía. La SRAM, debido a su alta velocidad, es usada como memoria caché.
DRAM
Siglas de Dynamic RAM, un tipo de memoria de gran capacidad pero que precisa ser constantemente refrescada (re-energizada) o perdería su contenido. Generalmente usa un transistor y un condensador para representar un bit Los condensadores debe de ser energizados cientos de veces por segundo para mantener las cargas. A diferencia de los chips firmware (ROMs, PROMs, etc.) las dos principales variaciones de RAM (dinámica y estática) pierden su contenido cuando se desconectan de la alimentación. Contrasta con la RAM estática.
Algunas veces en los anuncios de memorias, la RAM dinámica se indica erróneamente como un tipo de encapsulado; por ejemplo “se venden DRAMs, SIMMs y SIPs”, cuando deberia decirse “DIPs, SIMMs y SIPs” los tres tipos de encapsulado típicos para almacenar chips de RAM dinámica.
Tambien algunas veces el término RAM (Random Access Memory) es utilizado para referirse a la DRAM y distinguirla de la RAM estática (SRAM) que es más rápida y más estable que la RAM dinámica, pero que requiere más energía y es más cara
SDRAM
Siglas de Synchronous DRAM, DRAM síncrona. Este tipo de memoria se conecta al reloj del sistema y está diseñada para ser capaz de leer o escribir a un ciclo de reloj por acceso, es decir, sin estados de espera intermedios. SDRAM entrelaza dos o más matrices de memoria interna de tal forma que mientras que se está accediendo a una matriz, la siguiente se está preparando para el acceso. SDRAM-II es tecnología SDRAM más rápida. También conocido como DDR DRAM o DDR SDRAM (Double Data Rate DRAM o SDRAM), permite leer y escribir datos a dos veces la velocidad bús.
FPM
Siglas de Fast Page Mode, memoria en modo paginado, el diseño más comun de chips de RAM dinámica. El acceso a los bits de memoria se realiza por medio de coordenadas, fila y columna. Antes del modo paginado, era leido pulsando la fila y la columna de las líneas seleccionadas. Con el modo pagina, la fila se selecciona solo una vez para todas las columnas (bits) dentro de la fila, dando como resultado un rápido acceso. La memoria en modo paginado tambien es llamada memoria de modo Fast Page o memoria FPM, FPM RAM, FPM DRAM. El término “fast” fué añadido cuando los más nuevos chips empezaron a correr a 100 nanoseconds e incluso más.
EDO
Siglas de Extended Data Output, un tipo de chip de RAM dinámica que mejora el rendimiento del modo de memoria Fast Page alrededor de un 10%. Al ser un subconjunto de Fast Page, puede ser substituida por chips de modo Fast Page.
Sin embargo, si el controlador de memoria no está diseñado para los más rápidos chips EDO, el rendimiento será el mismo que en el modo Fast Page.
EDO elimina los estados de espera manteniendo activo el buffer de salida hasta que comienza el próximo ciclo.
BEDO (Burst EDO) es un tipo más rápido de EDO que mejora la velocidad usando un contador de dirección para las siguientes direcciones y un estado ‘pipeline’ que solapa las operaciones.
PB SRAM
Siglas de Pipeline Burst SRAM. Se llama ‘pipeline’ a una categoría de técnicas que proporcionan un proceso simultáneo, o en paralelo dentro de la computadora, y se refiere a las operaciones de solapamiento moviendo datos o instrucciones en una ‘tuberia’ conceptual con todas las fases del ‘pipe’ procesando simultáneamente. Por ejemplo, mientras una instrucción se está ejecutándo, la computadora está decodificando la siguiente instrucción. En procesadores vectoriales, pueden procesarse simultáneamente varios pasos de operaciones de coma flotante
La PB SRAM trabaja de esta forma y se mueve en velocidades de entre 4 y 8 nanosegundos.
MEMORIA DDERZ
MEMORIA DDR
 
 Memoria DDR  1GB  PC-400 Transcend
MEMORIA RAMBUS

MEMORIA S DRAM
MEMORIA SDDIMM
MEMORIA RIMM